Brain Tumours-Treatment options and outcomes

Mr. Yagnesh Vellore FRACS Neurosurgeon and Spine Surgeon

WHO Classification

- Neuroepithelial tissue
- Cranial and paraspinal nerves
- Meninges
- Lymphomas and haematopoetic
- Germ cell
- Sellar region
- Metastatic

Primary brain tumours

• Incidence 24.6/100000 adults in US

One third malignant

Less in children but more malignant

 Ranked 19th in incidence for cancer in Australia, but 4th in person years lost to 75

Adults (11/12)	Children (1/12)
Supratentorial 80-85%	Infratentorial 60%
Gliomas 50%	Pilocytic astrocytomas 27%
Meningiomas 15%	Medulloblastomas 27%
Metastases 15%	Brain stem gliomas 28%
Pituitary 8%	Ependymoma
Acoustic neuroma 8%	

Presentation

- Raised ICP
- Progressive neurological deficit e.g. motor weakness
- Headache
- Seizure
- Mental state change
- TIA like sx
- Endocrinopathies

Aetiology

- Familial syndromes eg NF 1 optic glioma
- Genetics eg. p53 loss in glioblastoma
- Radiation eg. meningioma, Glioblastoma
- Immuosuppression eg. Lymphoma
- Weak evidence: trauma & meningioma
- Unproven: power lines/mobile phones

Glioma

- Half of brain tumours are gliomas
- 2/3 are high grade astrocytomas (ie GBM)
- Types
 - Astrocytomas
 - Oligodendroglial tumours
 - Mixed gliomas
 - Ependymomal tumours
 - Choroid plexus tumours
 - Glial tumours of uncertain origin

Astrocytoma

• WHO grade I: Pilocytic astrocytoma

WHO grade II: Diffuse astrocytoma

WHO grade III: Anaplastic astrocytoma

- WHO grade IV: Glioblastoma multiforme
 - Diffusely infiltrating astrocytomas = WHO grade II, III & IV

Pilocytic astrocytoma

- Children, young adult
- 1/3 PCA have NF1
- Preferred sites:
 - Optic nerve
 - Chiasmal/hypothalamic
 - Thalamus/basal ganglia
 - Cerebellar hemisphere
 - Brainstem
 - Spinal cord

Pilocytic astrocytoma

- Occasionally seed the neuraxis
- Surgical cure if total removal
- Better prognosis: 10 yr survival 94%
- May recur later in life
- May undergo malignant degeneration?RTX
- RTX for inoperable recurrence
- Chemo preferred over RTX in children

Difusely infiltrating astrocytoma

• >60% primary brain tumours

Adults

Cerebral hemisphere

Diffusely infiltrating astrocytoma

Diffuse astrocytoma (DA)

Anaplastic astrocytoma (AA)

Glioblastoma (GBM)

Increasing degrees of malignancy

Diffusely infiltrating astrocytoma

WHO designation	DA	AA	GBM
WHO grading	II	III	IV
Mean age	34	41	53
% of			
astrocytomas	10-15%	35-40%	50-60%
Incidence	1.4/million/yr		2-3/100,000/yr
Clinical	Seizures	Deficits	Increased ICP
	Subtle deficits	Seizures	Deficits
		Increased ICP	Seizures
Imaging	CT: low density		
	no enhancement	complex enhancement	ring enhancement
Median survival (optimal Rx)	7-10 years	3 years	12-14 months

LGG

- WHO 2 astrocytoma
- Oligodendroglioma
- Oligoastrocytoma
- 15% of all primary brain tumours
- Younger age
- Seizures in 80%
- Predilection for insula and supplementary motor area

Management of LGG

- Controversial
- Options:
 - Serial exams & imaging investigations
 - Surgery
 - Biopsy
 - Partial resection
 - Total resection
 - Radiotherapy (early vs late)
 - Chemotherapy
- Diffuse vs focal
- Extent of resection
- 1p19q status (oligo)

AA/GBM (HGG)

- Older age
- Mental state changes more common
- Poor prognosis

Treatment of HGG

- Issues:
 - Age (70)
 - Histology
 - Karnofsky score (70)
 - Location: deep/lobar
 - Patient's wishes
 - Presenting features
- Good evidence for extent of resection
- Stupp protocol: concurrent temozolamide + RTX

Treatment (AA & GBM)

- Biopsy versus cytoreductive surgery
 - NOT cure
 - Aim: prolong quality survival

Options	Median survival (months)
Biopsy	3-4
Resection	6
Biopsy + RadioRx	6-8
Resection + RadioRx	9-10
Resection + RTx + chemo	15-18

Newer Technologies

- Functional MRI
- DTI fibre tracking
- 5-ALA assisted resection

Meningioma

- 14-19% primary brain tumour
- Extrinsic
- Origin: arachnoid cap cells
- Peak age 45
- F>M=1.8:1
- Excellent prognosis

Meningioma

Mostly benign, slow growing (WHO grade I)

- Greater likelihood of recurrence and aggressive behaviour
 - Atypical meningioma (WHO grade II)
 - Anaplastic meningioma (WHO grade III)

Sites

- Convexity
- Parafalcine/parasagittal
- Olfactory groove
- Sphenoidal ridge
- Parasellar
- Optic sheath
- Tentorium cerebelli
- CPA
- Intraventricular
- Foramen magnum
- Spinal

CT/MRI

- Well-circumscribed, extrinsic, durally-based
- Homogenous enhancement
- Dural tail
- +/- oedema
- +/- hyperostosis
- +/-calcification
- Occa en-plaque

Management

- Surgery
 - Aim for complete removal of tumour and its dural origin
 - Simpson grading
 - Sinus involvement
- Radiotherapy:
 - Unhelpful
 - For grade III meningioma
- 5 year survival 92%

Pituitary adenoma

- 10% intracranial tumours
- Anterior lobe of pituitary gland
- Usually benign
- 20-40s
- M=F
- MEN
- Microadenoma, <1cm
- Macroadenoma, ≥ 1cm

Classification (Histology)

- Histology
 - Chromophobe, acidophil, basophil
- Endocrine function
 - Endocrine-active tumours
 - Prolactinoma
 - ACTH-secreting tumours
 - GH-secreting tumours
 - Thyrotropin-secreting tumours
 - Gonadotropin-secreting tumours
 - Endocrine-inactive tumours
 - Null-cell adenoma
 - Oncocytoma
 - others

Presentation

- Endocrinological disturbance: over or underproduction of hormones
- Mass effect (more common with non-functioning tumours): optic chiasm
 3rd ventricle (hydrocephalus) cavernous sinus (cranial nerves)
- Apoplexy
- CSF rhinorrhea
- Headache
- incidental

Clinical-Local mass effect

- Headache
- Visual field defects
 - Sup temp quadrantanopia
 - Bitemporal hemianopia
- Cavernous sinus compession
 - CNIII, IV, V1, V2, VI palsies
 - Proptosis, chemosis
 - ICA encasement
- Vertical extension
 - Hydrocephalus
 - Hypothalamic compression
- Inferior extension
 - CSF rhinorrhoea

Evaluation: Hx & O/E

Signs/symptoms of endocrine hyperfunction

prolactin: amenorrhea, nipple discharge, impotence

thyroid: heat intolerance, anxiety, palpitations

GH: acromegaly/gigantism

cortisol: hyperpigmentation, Cushing's syndrome

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 23-5

Evaluation: Hx & O/E

• Endocrine deficits (in order of likelihood):

GH: growth delay, metabolic syndrome

LH/FSH: hypogonadism, amenorrhea, low libido, infertility

Thyroid: myxedema, cold intolerance, weight gain

ACTH: orthostatic hypotension, easy fatigability

DI: almost never seen pre-operatively

Pituitary apoplexy

- Acute H/A
- Rapid progressive visual loss
- Extraocular nerve palsies
- Acute pituitary insufficiency
- Mx:
 - Steroid
 - Urgent decompression

Endocrine screening

- 8am cortisol & 24 hr urine free cortisol
- Free T4, TSH
- PRL
- FSH, LH, sex steroids
- IGF-1
- Fasting BSL

Imaging

- MRI
- CT (stereotaxis)

Treatment

- If prolactinoma, medical treatment with bromocriptine, cabergolide
- Operative aproaches:
 - Transsphenoidal
 - Craniotomy
- (Radiotherapy)

When to operate: hormonally inactive macroadenomas

- Apoplexy: rapid visual/neurological deterioration: an emergency
- Tumours causing mass effect: visual field deficit / panhypopituitarism
- Tumours elevating chiasm even without signs/symptoms
- To obtain tissue in questionable cases
- Nelson's syndrome (hyperpigmentation, raised ACTH, progression of pituitary tumour after bilateral adrenalectomies)

Outcomes

Generally good, especially

Endocrinological cure in 25% PRL and 20% GH tumours

ACTH tumour: 85% cure for microadenomas

• Recurrence rate: 12%